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Abstract
We investigate the fermionic sector of a given theory, in which massive and
charged Dirac fermions interact with an Abelian gauge field, including a non-
standard contribution that violates both Lorentz and CPT symmetries. We offer
an explicit calculation in which the radiative corrections due to the fermions
seem to generate a Chern–Simons-like effective action. Our results are obtained
under the general guidance of dimensional regularization, and they show that
there is no room for Lorentz and CPT violation in both commutative and
noncommutative spacetimes.

PACS numbers: 11.30.Cp, 11.303.Er

1. Introduction

Maxwell’s theory of electromagnetism was crucial to question Galilei invariance, to give rise
to Lorentz symmetry. Nowadays, in string theory one may find a way to question Lorentz
invariance, since there are interactions that support spontaneous breaking of Lorentz symmetry
[1]. In string theory, one may also find room for noncommutativity of the coordinates that
define the spacetime manifold [2]. Thus, it appears legitimate to investigate possible breaking
of Lorentz invariance in both commutative and noncommutative spacetimes.

The issue of breaking Lorentz invariance has been recently addressed by many authors.
The standard route [3–6] includes a modification of Maxwell’s theory, in which one adds the
Chern–Simons-like term κµεµνλρFνλAρ . The problem relies on recognizing that Lorentz and
CPT symmetries are violated in the fermionic sector of a given theory, which contains the
contributions [7–19]

If =
∫

d4xψ̄(i/∂ − m − /A − /bγ5)ψ. (1)

The first three terms are usual; they describe charged and massive Dirac fermions coupled to
an Abelian gauge field. However, the fourth term is unusual: bµ is a constant 4-vector which
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selects a fixed direction in spacetime, and explicitly violates Lorentz and CPT symmetries.
The fermions can be integrated, and the radiative result may lead to

ICS = 1

2

∫
d4xεµνλρκµFνλAρ (2)

with κµ being proportional to bµ, that is κµ = Cbµ. This result, if correct, introduces a
modification of electrodynamics, which allows for the explicit violation of Lorentz and CPT
symmetries. The issue has been carefully investigated in several different contexts, leading to
results in which C vanishes [7, 14] or those in which it does not [8–13, 15–19].

In the present work we revisit the problem, with the aim of extending the calculation to the
noncommutative spacetime manifold. The importance of investigating the noncommutativity
of spacetime has been brought to high-energy physics via string theory [2] (see also [20, 21]
for other information). In our quest to deal with the issue in the standard case, however, we
had to introduce new calculations which led us to the result that there is neither Lorentz nor
CPT violation in the commutative spacetime. And this was also shown to be correct in the
noncommutative case. These results were obtained under the general guidance of dimensional
regularization, and they have led us to offer our calculations in a form as standard as possible,
keeping track of the main steps and enlightening the way the puzzle shows up: as we shall see,
there is an intricate entanglement between the calculation involving the Dirac matrices and
the evaluation of the momentum integral of all the contributions at first order in the vector that
responds for Lorentz and CPT violation, and at second and third (in the noncommutative case)
orders in the gauge field. We implement our investigations using the derivative expansion of
operators [22–26], and we consider the spacetime as commutative and noncommutative.

2. Commutative spacetime

Firstly we work in the commutative case. To account for the fermionic integration we write

eiI [b,A] =
∫

Dψ̄Dψ ei
∫

d4xLf (3)

where the effective action is given by

I [b,A] = −i Tr ln( /p − m − /A − /bγ5). (4)

We use this expression to write: I [b,A] = I [b] + I ′[b,A]. The first term is I [b] =
−i Tr ln( /p − m − /bγ5), which does not depend on the gauge field. The second term is
I ′[b,A], which is given by

I ′[b,A] = i Tr
∞∑

n=1

1

n

[
1

/p − m − /bγ5
/A

]n

. (5)

In this expression we single out the term

I (2)[b,A] = i

2
Tr

1

/p − m − /bγ5
/A

1

/p − m − /bγ5
/A (6)

which is the term that matters, in the quest to find how the radiative corrections generate the
Chern–Simons-like term written in equation (2).

We can proceed following two distinct routes, in which one includes or not the contribution
involving the vector bµ in the Dirac propagator (see [8] for details). In the present work we
follow the perturbative route, so we use the expression

1

/p − m − /bγ5
= 1

/p − m
+

1

/p − m
/bγ5

1

/p − m
+ · · · (7)
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to write, to first order in b and second order in A

I(1,2)[b,A] = i

2
Tr[S(p)/bγ5S(p) /AS(p) /A + S(p) /AS(p) /bγ5S(p) /A] (8)

where we have set

S(p) = 1

/p − m
. (9)

We rewrite equation (8) in the form

I (1,2)[b,A] = i

2

∫
d4x

(
	µν

a + 	
µν

b

)
AµAν (10)

where

	µν
a = tr

∫
d4p

(2π)4
S(p)/bγ5S(p)γ µS(p − i∂)γ ν (11)

and

	
µν

b = tr
∫

d4p

(2π)4
S(p)γ µS(p − i∂)/bγ5S(p − i∂)γ ν (12)

where tr stands for the trace over the Dirac matrices.
We now follow [22–26] and use the expansion

1

/p − i/∂ − m
= 1

/p − m
+

1

/p − m
i/∂

1

/p − m
+ · · · (13)

which is valid up to first order in ∂ , which is the expression we need to generate the Chern–
Simons-like term. With this we change 	

µν
a → 	

µν

1 and rewrite it in the form

	
µν

1 = tr
∫

d4p

(2π)4
S(p)/bγ5S(p)γ µS(p)i/∂S(p)γ ν . (14)

Also, we change 	
µν

b → 	
µν

2 + 	
µν

3 to write

	
µν

2 = tr
∫

d4p

(2π)4
S(p)γ µS(p)/bγ5S(p)i/∂S(p)γ ν (15)

and

	
µν

3 = tr
∫

d4p

(2π)4
S(p)γ µS(p)i/∂S(p)/bγ5S(p)γ ν . (16)

We work with 	
µν

1 . It can be written as 	
µν

1 = 	
µν

1,div + 	
µν

1,fin, where

	
µν

1,div = ibλ tr
∫

d4p

(2π)4

/pγ λγ5 /pγ µ/p/∂/pγ ν

(p2 − m2)4
(17)

and

	
µν

1,fin = im2bλ tr
∫

d4p

(2π)4

1

(p2 − m2)4
( /pγ λγ5 /pγ µ/∂γ ν + /pγ λγ5γ

µ/p/∂γ ν + /pγ λγ5γ
µ/∂/pγ ν

+ γ λγ5 /pγ µ/p/∂γ ν + γ λγ5 /pγ µ/∂/pγ ν + γ λγ5γ
µ/p/∂/pγ ν + m2γ λγ5γ

µ/∂γ ν). (18)

The other two terms 	
µν

2 and 	
µν

3 are similar, and are treated similarly.
We evaluate the integrals under the general guidance of dimensional regularization

[27–29]. Thus, we change dimensions from 4 to 2w, and we change d4p/(2π)4 to
(µ2)2−w[d2wp/(2π)2w], where µ is an arbitrary parameter that identifies the mass scale.
We use two distinct routes to perform the calculations involving the Dirac matrices. In the first
route we use the cyclic property of the trace, to move γ5 to the very end of every expression
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involving the trace of Dirac matrices. The potential divergences in the momentum integration
come from the first term of 	

µν

1 . We use∫
d2wp

(2π)2w

pαpβpγ pδ

(p2 − m2)4
= i

24(4π)w

�(2 − w)

(m2)2−w
Gαβγ δ (19)

where Gαβγδ = gαβgγδ + gαγ gβδ + gαδgβγ . We also use {γ α, γ β} = 2gαβ and γ αγα = 2w in
order to rewrite equation (10) in the form

I (1,2)[b,A] = 3

2
i	(w)bµ tr(γ µγ νγ λγ ργ5)

∫
d4x∂νAλAρ. (20)

Here the factor 3 accounts for identical contributions that come from 	
µν

1 ,	
µν

2 and 	
µν

3 .
Also, 	(w) is given by

	(w) = −2w − 1

96π2
+

w + 1

96π2

(
4πµ2

m2

)2−w

�(2 − w)(2 − w). (21)

In the above calculations we have set 	
µν

1 = 	
µν

1,div + 	
µν

1,fin to split the 	
µν

1 contribution
into two parts, one divergent and the other finite. The contribution 	

µν

1,div is divergent in the
limit w → 2, and it contributes with the term proportional to �(2 − w). However, the factor
involving the Dirac matrices contributes with the term (2 − w), in such a way that the full
contribution is finite in the limit w → 2. Furthermore, this finite term exactly compensates
the finite contribution that appears from 	

µν

1,fin in the limit w → 2. In the limit w → 2 we can
use tr(γ µγ νγ λγ ργ5) = 4iεµνλρ , but 	(w → 2) → 0 and this leaves no room for Lorentz and
CPT violation. The perfect balance between the two contributions that we have just found has
been identified before in [30] as being peculiar to dimensional regularization. We stress that
if one uses the relation {γ µ, γ5} = 0 to move γ5 to the end of every expression involving the
trace of Dirac matrices, the perfect balance between the two contributions is broken, giving
rise to a nonzero value for the constant C. This result is due to the use of {γ µ, γ5} = 0, which
is valid in the four-dimensional spacetime, but we are working in 2w dimensions.

We make this point stronger by considering another route to implement the calculation
involving properties of the Dirac matrices when the spacetime has dimension 2w. We follow
[29, 31–33] and now the Dirac matrices corresponding to the external indices µ, ν and λ are
physical matrices; they are written in the form γ̄ µ, etc. The contribution

tr(γ αγ̄ λγ5γ
βγ̄ µγ γ γ ργ δγ̄ ν)Gαβγ δ (22)

splits into the three terms

tr(γ αγ̄ λγ5γαγ̄
µγ βγ ργβγ̄ ν) + tr(γ αγ̄ λγ5γ

βγ̄ µγαγ
ργβγ̄ ν) + tr(γ αγ̄ λγ5γ

βγ̄ µγβγ ργαγ̄
ν)

(23)

and the Dirac matrices are changed according to γ α → γ̄ α + γ̂ α , where {γ̄ α, γ̄ β} = 2ḡαβ ,
{γ̂ α, γ̂ β} = 2ĝαβ , and {γ̄ α, γ̂ β} = 0, and also γ̄ αγ̄α = 4, γ̄ αγ̂α = 0 and γ̂ αγ̂α = 2(w − 2).
In this case we can use either the cyclic property of the trace, or the relations {γ5, γ̄

µ} =
[γ5, γ̂

µ] = 0 to rewrite equation (10) in the form

I (1,2)[b,A] = 3

2
	′(w)bµ

∫
d4xεµνλρ∂νAλAρ (24)

where we have used tr(γ̄ µγ̄ ν γ̄ λγ̄ ργ5) = 4iεµνλρ and tr(γ µγ νγ λγ̂ ργ5) = 0. Also, 	′(w) =
−4	(w). We use this result to write equation (20) as in the Chern–Simons-like term in
equation (2), where κµ = Cbµ, with C given by

C = 2w − 1

16π2
− 1 + w

16π2

(
4πµ2

m2

)2−w

�(2 − w)(2 − w). (25)

We see that C → 0 in the limit w → 2, which confirms the former result, in which we have
used the cyclic property of the trace.
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3. Spacetime as a noncommutative manifold

We now consider the spacetime as noncommutative [34–41]. In this case we set [xµ, xν] =
iθµν , where θµν is a constant antisymmetric tensor. As a consequence, one replaces the
ordinary product of functions by the Moyal product

f (x) � g(x) = e
i
2 θµν∂µ∂ ′

ν f (x)g(x ′)|x′=x . (26)

The first modification we have to introduce concerns equation (1), which should be changed
to

Ĩ f =
∫

d4x ψ̄ � (i/∂ − m − /bγ5 − /A�)ψ (27)

or better

Ĩ f =
∫

d4x ψ̄(x)(i/∂ ′ − m − /bγ5 − ei∂×∂ ′
/A)ψ(x ′)

∣∣∣
x′=x

(28)

where we are working with the fundamental (or anti-fundamental) representation of the gauge
group, using 1

2θµν∂µ∂ ′
ν = ∂ × ∂ ′. In this case equation (2) should be changed to

ĨCS =
∫

d4x εµνλρκ̃µ

(
∂νAλ � Aρ + 2

3 iAν � Aλ � Aρ

)
(29)

where κ̃µ must have the form κ̃µ = C̃bµ, to include modifications coming from the
noncommutativity of spacetime.

We are working with the fundamental representation of the gauge group. In this case
noncommutativity seems to change the gauge field A by the new field Ã = e∂×pA, and
this identification eases the work we have to implement, since we now see that the above
modification changes equation (5) to

Ĩ
′
[b,A] = i Tr

∞∑
n=1

1

n

[
1

/p − m − /bγ5
e∂×p/A(x)

]n

(30)

and now we single out the term

Ĩ
(2)

[b,A] = i

2
Tr

[
1

/p − m − /bγ5
e∂×p/A(x)

1

/p − m − /bγ5
e∂ ′×p/A(x ′)

]
x′=x

(31)

which modifies the former calculations as follows: we rewrite equation (10) in the form

Ĩ
(1,2)

[b,A] = i

2

∫
d4x

(
	̃µν

a + 	̃
µν

b

)
Aµ � A′

ν

∣∣∣∣
x′=x

(32)

where the terms 	̃
µν
a and 	̃

µν

b are now given by

	̃µν
a = tr

∫
d4p

(2π)4
S(p)/bγ5S(p)γ µS(p − i∂)γ ν e(∂+∂ ′)×p (33)

and

	̃
µν

b = tr
∫

d4p

(2π)4
S(p)γ µS(p − i∂)/bγ5S(p − i∂)γ ν e(∂+∂ ′)×p. (34)

In both cases, expanding the phase factors and propagators up to first order in the derivative the
result adds to zero, as in the commutative case. Thus, in the Chern–Simons-like contribution
that appears in equation (29), the term proportional to ∂µAν � Aλ remains as in the former
result in the commutative case.
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In the noncommutative case there is another contribution, trilinear in the gauge field,
which comes from equation (30) for n = 3. This contribution is given by

Ĩ
(3)

[b,A] = i

3
Tr

[
1

/p − m − /bγ5
e∂×p/A(x)

1

/p − m − /bγ5
e∂ ′×p/A(x ′)

× 1

/p − m − /bγ5
e∂ ′′×p/A(x ′′)

]
x′′=x′=x

. (35)

We use equation (7) to write, selecting the terms that are linear in b,

Ĩ
(1,3)

[b,A] = i

3
Tr S(p)

[
e∂×p/A(x)S(p) e∂ ′×p/A(x ′)S(p)/bγ5S(p)

+ e∂×p/A(x)S(p)/bγ5S(p) e∂ ′×p/A(x ′)S(p)

+ /bγ5S(p) e∂×p/A(x)S(p) e∂ ′×p/A(x ′)S(p)
]

e∂ ′′×p/A(x ′′)
∣∣∣
x′′=x′=x

. (36)

We use the identity (13) to write

Ĩ
(1,3)

[b,A] = i

3

∫
d4x

3∑
n=1

�µρν
n e(∂+∂ ′+∂ ′′)×pAµ � A′

ρ � A′′
ν

∣∣∣
x′′=x′=x

(37)

where

�
µρν

1 = tr
∫

d4p

(2π)4
S(p)/bγ5S(p)γ µS(p)γ ρS(p)γ ν (38)

and

�
µρν

2 = tr
∫

d4p

(2π)4
S(p)γ µS(p)/bγ5S(p)γ ρS(p)γ ν (39)

and

�
µρν

3 = tr
∫

d4p

(2π)4
S(p)γ µS(p)γ ρS(p)/bγ5S(p)γ ν . (40)

These three terms are very similar to the three terms 	
µν

1 , 	
µν

2 and 	
µν

3 that we have
found in equations (14), (15) and (16) of the former calculation. They contribute similarly,
and we can write, expanding the phase factor up to zeroth order in the derivative,

Ĩ
(1,3)

[b,A] = i�(w)

∫
d4x bµεµνλρAν � Aλ � Aρ (41)

where �(w) = −4	(w) (see equation (21)). We then add Ĩ
(1,2)

[b,A] and Ĩ
(1,3)

[b,A] to write
equation (29) in the form

ĨCS = C

∫
d4x εµνλρbµ

(
∂νAλ � Aρ +

2

3
iAν � Aλ � Aρ

)
(42)

where C is given in equation (25), the same result obtained in the commutative case. Thus, in
the limit w → 2 there is no room for Lorentz and CPT violation also in the noncommutative
case that we have just considered.

We can also work with the adjoint representation of the gauge group. In this case, in
the fermionic action in equation (5) we should change A to Ãad = (e∂×p − e−∂×p)A; also,
we include an extra factor of 1/2 in this fermionic action, in order to account for the use of
Majorana spinors. The change in the gauge field is similar to the identification done in the
former case, for the fundamental representation. The calculation is similar, and the procedure
that we follow is: the phase factors that appear from non-planar diagrams are also expanded
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up to first order in the derivative, in order to maintain the original programme of searching for
contributions linear in the derivative, bilinear in the gauge field and trilinear in the gauge field.
Within this context, the result in equation (32) should be changed to

Ĩ
(1,2)

ad [b,A] = i

2

∫
d4x

(
	̃

µν

a,ad + 	̃
µν

b,ad

)
[Aµ,A′

ν]�
∣∣∣
x′=x

(43)

where the terms 	̃
µν

a,ad and 	̃
µν

b,ad are now given by

	̃
µν

a,ad = tr
∫

d4p

(2π)4
S(p)/bγ5S(p)γ µS(p)γ ν(∂ × p) (44)

and

	̃
µν

b,ad = tr
∫

d4p

(2π)4
S(p)γ µS(p)/bγ5S(p)γ ν(∂ × p). (45)

We have

	̃
µν

a,ad = bλ tr
∫

d4p

(2π)4

∂ × p

(p2 − m2)3

(
/pγ λγ5 /pγ µ/pγ ν + m2/pγ λγ5γ

µγ ν
)
. (46)

We use dimensional regularization in order to write∫
d2wp

(2π)2w

pαpβ

(p2 − m2)3
= i(1 − w)

4(4π)w

�(1 − w)

(m2)2−w
gαβ (47)

and ∫
d2wp

(2π)2w

pαpβpγ pδ

(p2 − m2)3
= − im2

8(4π)w

�(1 − w)

(m2)2−w
Gαβγ δ. (48)

We use the above results to get

	̃
µν

a,ad = − m2

16π2

(
4πµ2

m2

)2−w

�(1 − w)(3 − w)εµνλρbλ∂̄ρ (49)

where ∂̄α = θαβ∂β .
The calculation involving 	̃

µν

b,ad is similar. It gives the result 	̃
µν

b,ad = −	̃
µν

a,ad , showing
that the contribution bilinear in the gauge field vanishes, as it did in the former case.

In the noncommutative case there is another contribution, trilinear in the gauge field,
similar to equation (37). It contributes with

Ĩ
(1,3)

ad [b,A] = i

3

∫
d4x

3∑
n=1

�
µρν

n,ad [[Aµ,A′
ρ]�, A′′

ν ]�

∣∣∣∣∣
x′′=x′=x

(50)

where

�
µρν

n,ad = �µρν
n (∂ × p) (51)

and �
µρν
n stands for the three contributions given by equations (38), (39) and (40). These

results show that there is no trilinear contribution independent of the derivative.
The above considerations lead to the result that there is no room for Lorentz or CTP

violation, despite the representation one chooses for the gauge group. Our results show that
there is no UV/IR mixing in the calculation of the induced Chern–Simons term, even when
non-planar diagrams are taken into account, as happens in the adjoint representation of the
gauge group.
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4. Conclusions

We summarize our work recalling that we have calculated the radiative corrections induced by
massive and charged Dirac fermions, interacting with an Abelian gauge field and including a
non-standard contribution that violates Lorentz and CPT invariance. Our results show that there
is an intricate entanglement between infinitely large contributions that come from integration
in momentum space, and infinitely small contributions that appear from the trace of Dirac
matrices. These two contributions compensate each other, and they do contribute to generate
a term that exactly cancels the finite term that appears from the remaining contributions.
Because of this intricate cancellation, there is no room for radiative generation of the Chern–
Simons-like term. Thus, there is neither Lorentz nor CPT violation generated radiatively. This
result is valid under the general guidance of dimensional regularization, despite the spacetime
being commutative or noncommutative. In the commutative case, causality leads to a similar
result, which excludes the induction of the Chern–Simons-like term [42].
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